Year 6 Mastery Overview Term by Term

Overview

One of the most frequent request we get as a Maths Hub is for a suggested long term curriculum plan for mathematics in primary. We have listened to what teachers need and the following mastery overviews have been developed by primary practioners in conjunction with the White Rose Maths Hub to provide a curriculum plan that will support 'Teaching for Mastery'.

There is a termly plan for each year group from Year 1 to Year 6; each term is split into twelve weeks. You will see from the overviews that a significant amount of time is devoted to developing key number concepts each year. This is to build their fluency as number sense will affect their success in other areas of mathematics. Students who are successful with number are much more confident mathematicians.

We hope you find them useful. If you have any comments about this document or have any ideas please do get in touch.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide a free assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice **Part 2:** Reasoning based questions

You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

9 Here is a rectan

rik out the perimeter of the rectar a units with your answer

The assessments have been designed with new KS2 SATS in mind. All of the assessments will be ready by 30 November 2015.

Year 6

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews;

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete – Pictorial – Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete – students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial – students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

An example of a bar modelling diagram used to solve problems.

Abstract – with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 6

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they don't appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Detailed Schemes

To complement these yearly overviews we are working on termly schemes of learning that provide:

- More details on how to teach particular aspects of the curriculum
- Fluency, reasoning and problem solving ideas for each topic.

These will gradually become available over this term. Please keep checking back for updates.

In addition to this the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'. They have been written by experts in mathematics.

It will also give you a detailed idea of what it means to take a mastery approach across your school. Information can be found on the link below.

https://www.ncetm.org.uk/resources/46689

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We don't believe that there are individuals who can do maths and those that can't. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with the other Maths Hubs across the country.

Year 6

Year 6 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12		
Autumn		r- Place lue		Number- addition, Subtraction, Multiplication and Division				Fractions						
Spring		iber- mals	Number- Percentages	Measurement			Number- Algebra Number- Ratio							
Summer	Geon Proper Sha	ties of	Geometry- Position and Direction	Post SATs Project Work										

Term by Term Objectives

Year group

6

Term

Autumn

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Number: Place Read, write, o compare num 000 000 and c value of each Round any wr to a required accuracy. Use negative context, and c intervals across Solve number problems that the above.	nder and abers up to 10 determine the digit. nole number degree of numbers in calculate ss zero.	Solve addition contexts, decid and why. Multiply multi- number using multiplication. Divide number using the form interpret rema fractions or by Divide number formal written remainders ac Perform ment operations and Identify comm numbers. Use their know calculations in Solve problem multiplication	and subtraction ding which oper -digit number u the formal writh rs up to 4 digits hal written meth ainders as whole rounding as ap rs up to 4 digits nethod of sho cording to conte al calculations, i d large numbers non factors, com vledge of the or volving the four is involving addi and division.	including with m s. Imon multiples a der of operation	blems in hods to use a 2 digit ong ble number ion, and nders, e context. bber using the preting hixed and prime ns to carry out n,	in the same d Compare and Generate and Add and subt the concept of Multiply simp example $\frac{1}{4} \times \frac{1}{2}$ Divide proper Associate a fr example, 0.37 Recall and use	enomination. order fractions describe linear ract fractions w of equivalent fra- ole pairs of prop $=\frac{1}{8}$] fractions by w action with divi 75] for a simple	s, including frac r number sequ with different de actions. hole numbers hole numbers ision and calcu fraction [for es between simpl	ences (with frac enominations a writing the answe [for example $\frac{1}{3}$:	ctions) nd mixed number er in its simples $\div 2 = \frac{1}{6}$] ction equivaler	pers, using st form [for hts [for

Term by Term Objectives

Year group	6	Term	Spring
------------	---	------	--------

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Number: Decimals		Number:	Measurement		Number: Algebra		Number: ratio		Geometry	Time at the	
Identify the value of each		Percentages				-	Use simple formulae		Solve problems involving		beginning
digit in numbers given to		Solve	and conversion of units of measure, using						the relative sizes of two		or end of
three decimal	l places and	problems	decimal notation up to three decimal			Generate and	l describe	quantities wh	ere missing	Illustrate	the term for
multiply num	bers by 10,	involving	places where a	appropriate.		linear numbe	r sequences.	values can be	found by	and name	consolidatio
100 and 1000	giving	the						using integer	multiplication	parts of	n ,gap
answers up to	o 3dp.	calculation	Use, read, writ	te and convert	between	Express missi	ng number	and division f	acts.	circles,	filling,
		of	standard units	, converting m	easurements	problems alge	ebraically.			including	seasonal
Multiply one	digit numbers	percentages	of length, mas	s, volume and	time from a			Solve problem	ns involving	radius,	activities,
with up to 2d	p by whole	[for	smaller unit of	f measure to a	larger unit,	Find pairs of r	numbers that	similar shapes where the		diameter	assessments
numbers.		example, of	and vice versa, using decimal notation to			satisfy an equ	lation with	scale factor is known or		and circumferenc	, etc.
		measures	up to 3dp.			two unknowns.		can be found.		e and know	
Use written d	Use written division									that the	
methods in cases where		15% of 360]	Convert between miles and kilometres.			Enumerate possibilities of		Solve problems involving		diameter is	
the answer ha	the answer has up to two					combinations of two		unequal sharing and		twice the	
decimal place	decimal places.		Recognise that shapes with the same			variables.		grouping usin	g knowledge	radius.	
			areas can have different perimeters and					of fractions a	nd multiples.		
Solve problem		for	vice versa.							Interpret	
•	require answers to be									and	
	rounded to specified		Recognise whe	•						construct pie	
degrees of ac	degrees of accuracy.		formulae for a	rea and volum	e of shapes.					charts and	
		Recall and								line graphs	
		use	Calculate the a	area of parallel	ograms and					and use	
		equivalence	triangles.							these to	
		s between								solve	
		simple FDP	Calculate, estimate and compare volume							problems.	
			of cubes and c	-							
		different	including cm ³ ,		ding to other					Calculate the	
		contexts.	units (mm³, kn	n³)						mean as an	
	adomy Uplifay									average.	

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 6	
--------	--

Year group 6 Term Summer

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Geometry- Properties of		Geometry-		SATS wc						Time at the b	eginning or
<u>Shapes</u>		Position and		9 May						end of the te	
Draw 2D sha	-	<u>Direction</u>		2016						consolidation	
given dimens	ions and	Describe		2010						gap filling, se	
angles.		positions on								activities, ass	essments, etc.
6	1	the full									
Compare and		coordinate									
-	apes based on	grid (all four									
their propert and find unk		quadrants).									
in any triangl	-	Draw and									
	s and regular	translate									
polygons.	o unu regular	simple									
1-70		shapes on									
Recognise an	gles where	the									
they meet at	a point, are	coordinate									
on a straight	line, or are	plane, and									
vertically opp		reflect them									
find missing a	angles.	in the axes.									

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

